1. 廣東可易亞半導體科技有限公司

              國家高新企業

              cn en

              新聞中心

              n溝道mos管開關電路-詳解n溝道mos管電源開關電路圖-KIA MOS管

              信息來源:本站 日期:2018-06-29 

              分享到:

              n溝道mos管開關電路

              項目中最常用的為增強型mos管,分為N溝道和P溝道兩種。

              n溝道mos管開關電路

              由于n溝道mos管開關電路其導通電阻小,且容易制造所以項目中大部分用到的是n溝道mos管開關電路。在MOS管原理圖上可以看到,漏極和源極之間有一個寄生二極管。寄生二極管只在單個的MOS管中存在,在集成電路芯片內部通常是沒有的。


              1.導通特性

              PMOS的特性,Vgs小于一定的值就會導通,適合用于源極接VCC時的情況(高端驅動)。但是,雖然PMOS可以很方便地用作高端驅動,但由于導通電阻大,價格貴,替換種類少等原因,在高端驅動中,通常還是NMOS,n溝道mos管開關電路。


              n溝道mos管開關電路的特性,Vgs大于一定的值就會導通,適合用于源極接地時的情況(低端驅動),只要柵極電壓達到4V或10V就可以了,雖然4V就導通了,但是為了完全導通電壓在其可承受范圍應該盡量大一些。


              2.MOS開關管損失

              不管是n溝道mos管開關電路還是PMOS,導通后都有導通電阻存在,這樣電流就會在這個電阻上消耗能量,這部分消耗的能量叫做導通損耗。選擇導通電阻小的MOS管會減小導通損耗。現在的小功率MOS管導通電阻一般在幾十毫歐左右,幾毫歐的也有。

              MOS在導通和截止的時候,一定不是在瞬間完成的。MOS兩端的電壓有一個下降的過程,流過的電流有一個上升的過程,在這段時間內,MOS管的損失是電壓和電流的乘積,叫做開關損失。通常開關損失比導通損失大得多,而且開關頻率越高,損失也越大。

              導通瞬間電壓和電流的乘積很大,造成的損失也就很大。縮短開關時間,可以減小每次導通時的損失;降低開關頻率,可以減小單位時間內的開關次數。這兩種辦法都可以減小開關損失。


              3.MOS管驅動

              跟雙極性晶體管相比,一般認為使MOS管導通不需要電流,只要GS電壓高于一定的值,就可以了。這個很容易做到,但是,我們還需要速度。

              在MOS管的結構中可以看到,在GS,GD之間存在寄生電容,而MOS管的驅動,實際上就是對電容的充放電。對電容的充電需要一個電流,因為對電容充電瞬間可以把電容看成短路,所以瞬間電流會比較大。選擇/設計MOS管驅動時第一要注意的是可提供瞬間短路電流的大小。


              第二注意的是,普遍用于高端驅動的n溝道mos管開關電路,導通時需要是柵極電壓大于源極電壓。而高端驅動的MOS管導通時源極電壓與漏極電壓(VCC)相同,所以這時柵極電壓要比VCC大4V或10V。如果在同一個系統里,要得到比VCC大的電壓,就要專門的升壓電路了。很多馬達驅動器都集成了電荷泵,要注意的是應該選擇合適的外接電容,以得到足夠的短路電流去驅動MOS管。


              由于具有較低的導通電阻(RDS(on))和較小尺寸,N溝道MOSFET在產品選擇上超過了P溝道。在降壓穩壓器應用中,基于柵控電壓極性、器件尺寸和串聯電阻等多種因素,使用P溝道MOSFET或N溝道MOSFET作為主開關。同步整流器應用幾乎總是使用N溝道技術,這主要是因為N溝道的RDS(on)小于P溝道的,并且通過在柵極上施加正電壓導通。


              MOSFET多數是載流子器件, N溝道MOSFET在導電過程中有電子流動。 P溝道在導電期間使用被稱為空穴的正電荷。電子的流動性是空穴的三倍。盡管沒有直接的相關性,就RDS(on)而言,為得到相等的值,P溝道的管芯尺寸大約是N溝道的三倍。因此N溝道的管芯尺寸更小。


              n溝道mos管開關電路N溝道MOSFET在柵-源極端子上施加適當閾值的正電壓時導通;P溝道MOSFET通過施加給定的負的柵-源極電壓導通。


              MOSFET的柵控決定了它們在SMPS轉換器中的應用。例如,N溝道MOSFET更適用于以地為參考的低側開關,特別是用于升壓、SEPIC、正向和隔離反激式轉換器。在同步整流器應用以及以太網供電(PoE)輸入整流器中,低側開關也被用來代替二極管作為整流器。P溝道MOSFET最常用作輸入電壓低于15VDC的降壓穩壓器中的高側開關。根據應用的不同,N溝道MOSFET也可用作降壓穩壓器高側開關。這些應用需要自舉電路或其它形式的高側驅動器。

              n溝道mos管開關電路

              圖1:具有電平移位器的高側驅動IC


              n溝道mos管開關電路

              圖2:用自舉電路對高側N溝道MOSFET進行柵控

              極性決定了n溝道mos管開關電路MOSFET的圖形符號。不同之處在于體二極管和箭頭符號相對于端子的方向。

              n溝道mos管開關電路

              圖3:P溝道和N溝道MOSFET的原理圖

              注意體二極管和箭頭相對漏極(D)和源極(S)端子的方向。


              n溝道mos管開關電路極性和MOSFET工作特性

              極性決定了MOSFET的工作特性。 對N溝道器件為正的電流和電壓對P溝道器件為負值。

              n溝道mos管開關電路

              圖4:MOSFET第一象限特征

              在有充足電壓施加到柵-源極端子的歐姆區域(ohmic region),n溝道mos管開關電路MOSFET“完全導通”。在對比圖中,N溝道歐姆區的VGS是7V,而P溝道的是-4.5V。


              隨著柵極電壓增加,歐姆曲線的斜率變得更陡,表明器件導電能力更強。施加的柵極電壓越高,n溝道mos管開關電路MOSFET的RDS(on)就越小。在某些應用中,對MOSFET進行柵控的是可以提供令人滿意的RDS(on)的電壓。額外的柵極電壓會因?C x Vgs x Vgs x f產生功耗,其中柵極電荷和開關頻率在確定MOSFET技術的最終工作點和選用方面起著重要作用。


              MOSFET既可工作在第一象限,也可工作在第三象限。沒有施加柵-源極電壓時,寄生體二極管導通。當柵極沒有電壓時,流入漏極的電流類似于典型的二極管曲線。

              n溝道mos管開關電路

              圖5:未柵控N溝道MOSFET工作于第三象限的典型特性

              施加柵極電壓時,根據VGS的值會產生非線性曲線。當VGS超過10V時,n溝道mos管開關電路完全在第三象限歐姆區內工作。然而,當柵極電壓低于10V時,二極管電壓鉗位于各種漏極電流水平。在非線性曲線中見到的彎曲是二極管和歐姆區之間的轉變點。

              n溝道mos管開關電路

              圖6:施加柵極電壓時,N溝道MOSFET工作在第三象限的典型特性


              聯系方式:鄒先生

              聯系電話:0755-83888366-8022

              手機:18123972950

              QQ:2880195519

              聯系地址:深圳市福田區車公廟天安數碼城天吉大廈CD座5C1


              請搜微信公眾號:“KIA半導體”或掃一掃下圖“關注”官方微信公眾號

              請“關注”官方微信公眾號:提供  MOS管  技術幫助


              n溝道mos管開關電路

              久久精品亚洲熟女